Circularity measurement and assessment in water towards standardised approaches 3 JUNE 2022

PARTNER EVENT #EUGREENWEEK 30 MAY - 5 JUNE 2022

EU GREEN DEAL

Quick introduction

Our expertise

- Water management & wastewater treatment
- Data acquisition & data analytics (Machine Learning and Artificial Intelligence)
- Circularity & Sustainability measurement & assessment (methods, tools & indicators)

UNIVERSITÀ

ULTIMATE

POLITECNICA

DELLE MARCHE

Zer

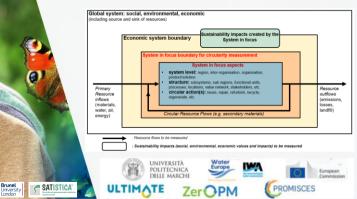
-10%U

Europe

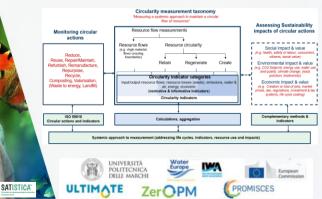
SYMBIOREM Water

Our projects

Do we have the methods and tools to measure and quantify circularity in water systems? How far are we from standardized indicators/approaches?


Water

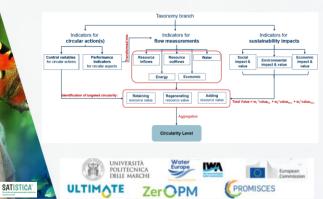
PROMISCES


SATISTICA

ULTIMATE

Circularity Measurement & Assessment – The new ISO framework

Circularity Measurement & Assessment



and a state of the

Brunel

London

Circularity Indicators – choice & calculation

a

and a state of the

Brunel

London

. . SATISTICA

Circularity Indicators - choice & calculation

Choice of Circularity Indicators depends on:

- System level (e.g. product, organisational, etc.)
- System sector (e.g. water, manufacturing, etc.)
- Implemented **circular action(s)** (e.g. reduction of resource use, etc.)
 - Sustainability impacts linked to circular action(s)
 - Meaningful outcome for interested parties

Circularity Indicators - Methods & Challenges

Data acquisition for calculation of circularity indicators:

> Primary data: measurement, design specifications, statistical treatment & combination

Secondary data: literature, statistics. databases, modelling

> Data effectiveness Data efficiency

Missing data -> Assessment of consequences

If consequences are severe:

- alternative acquisition approaches, e.g. modelling
- alternative ways to measure the
- indicator

ULTIMATE

UNIVERSITÀ

POLITECNICA

DELLE MARCHE

chose other indicators

SATISTICA

For full-scale implementation:

Availability of primary data

Data reliance for:

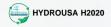
- Benchmark assessment (i.e. comparison with baseline)
- Dvnamic assessment (i.e. optimization of system's operation)

For pilot scale or new technologies:

- x Primary data not always available
 - Modelling procedures

Modelling & data reliance for:

Future behaviour (ex ante / prospective assessment) - changes in foreground and/or background system



Circularity Measurement & Assessment in Water - Challenges

Examples from H2020 Projects

Numerous anthropogenic & semi-natural sub-systems Water-Energy-Food-Ecosystems nexus

Circularity focused on manufacturing sector → lack of guidance on circularity measurement & assessment in water sector & nexus

Lack of circularity indicators for water sector & nexus

Water Cycle and Circular Economy Developing a Circularity Assessment Framework for Complex Water Systems

minter random A specific Transport

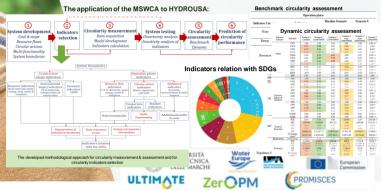
The Multi-Sectoral Water Circularity Assessment (MSWCA) framework

1. 3 CE principles

2. Socio-economic & noneconomic sectors

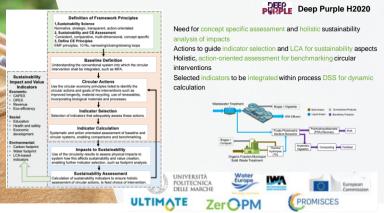
3. Symbiotic management of resources

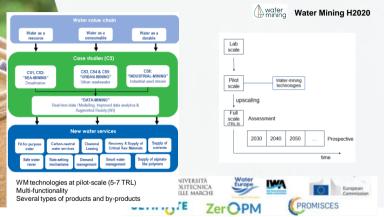

4. Value in and of water


5. Feedback loops & interdependencies

6. Synergies & antagonisms

7. Socio-economic activities & environmental resilience




Multi-platform, multi-product process impact allocation Product pathway depending on climate conditions

Construction of conventional and integrated system models for technology benchmarking, and integration within process DSS for dynamic assessment

Mater Mining H2020

Assessment of the projected full scale Assessment of the value of circular actions in short and/or long term (future scenarios)

PROMISCES

European

Challenges

Characterisation of resource flows in water systems

Water systems coupled with NBS, requiring a nexus approach

Water & WW management systems/technologies for multi-product generation

Low TRL of technologies & projection of system behaviour & circularity performance

Lack / Delay of primary data availability

Appropriate & case-specific circularity indicators

Meaningful outcome & usability of circularity indicators -----

Challenges of Circularity Assessment - Lessons learnt from projects

Solutions to overcome those challenges

Guidance on the true circularity of water & water-related resource (incl. waste & emissions) streams from environmental science perspective (Deep Purple)

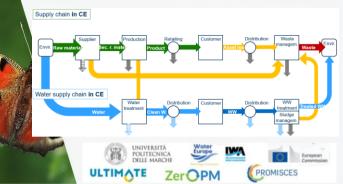
Development of the MSWCA framework (HYDROUSA)

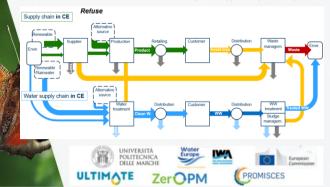
Targeted circularity measurement & assessment methodologies, following the new ISO (Deep Purple, Water Mining)

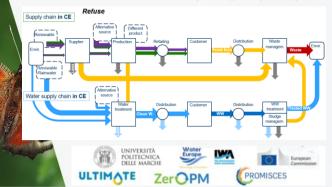
Upscaled & prospective circularity & sustainability assessment (Water Mining)

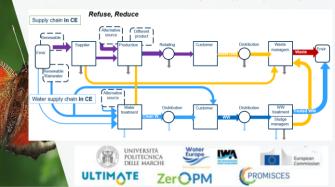
Combination of modelling procedures & operational data (HYDROUSA, Deep Purple, Water Mining)

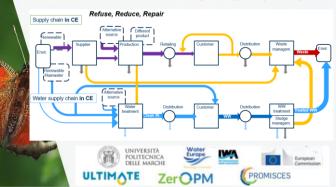
Guidance on how to select circularity & sustainability indicators (HYDROUSA)

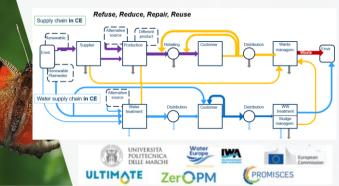

Integrate indicators within DSS for dynamic calculation for process optimisation (Deep Purple) UNIVERSITA Water

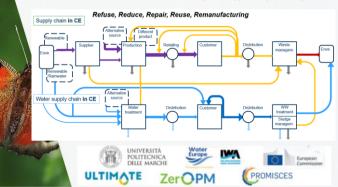


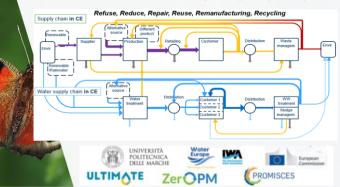

What does the new ISO bring and how can be applied to the water systems?











Summary of findings

PROMISCES

Focus of the new ISO

Manufacturing sector & upstream side of the supply chain (suppliers & producers):

Source selection of primary & secondary raw materials Responsibility & prediction of product fate based on design & specifications Water Suppliers:

Restricted source selection: natural, physical/local, regulatory issues Water quality changes with consecutive uses, fate depends on user and/or WWTP Stress on infrastructure, user awareness, WWTPs

Provided definitions for CE-related terms

Need for flows characterisation to apply the definitions

Importance of natural environment but how to approach it is unclear

Natural environment: inherent to water sector \rightarrow water is local & watershed needs to be considered

Preliminary list of potential circularity indicators

Not enough for water: water specificities & important aspects are not depicted in the indicators

ULTIMOTE ZerOPM

Where do we need to put our focus on water systems?

Integrated approach to circular water management
> natural environment & anthropogenic water systems: how to approach?

Correct & universal characterisation of water & water-related flows → unlock circularity potential & benchmark

Appropriate indicators in accordance with CE principles & Water Europe's Vision for Water Smart Society:

Conclusions

The new ISO:

- Standardized definitions

Appropriate characterization of flows to apply standardised definitions in water systems

Standardised methods & approaches

Issues on local nature of water & watershed consideration for a standardised approach Lack of standardised methods for natural environment & water valuation

Standardised circularity & sustainability indicators Lack of standardised indicators covering all important aspects of water systems

Our next actions

Focus on WWTPs & resource recovery facilities:

./

- Characterization of streams: renewable vs non-renewable; recoverable vs nonrecoverable; linear vs circular
 - Application to conventional WWT processes for benchmarking
 - Development of holistic CE assessment methodology, adapting the ISO: circular actions, resource flow circularity, value propositions, 6 capitals (Yorkshire Water), Water Smart Societies

Selection of meaningful circularity & sustainability indicators

Full-scale & prospective assessment

Transferability to DWTPs & Industrial symbiosis (water and resource recovery & reuse)

Thank you 🕲

Evina Katsou @ Evina.katsou@brunel.ac.uk

